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Two sets of RNA phosphoramidites, carrying the (fluoride-labile) 2'-O-[(triisopropylsilyl)oxy]methyl
(=tom) group and the (photolabile) [(R)-1-(2-nitrophenyl)ethoxy]methyl (=(R)-npeom) group, were pre-
pared (see 1-4 and 5-8, resp.). The two protecting groups were completely orthogonal to each other. Three
ribozyme-substrate constructs, protected each by a (R)-npeom group, were synthesized; on photolysis, efficient
cleavage of this remaining protecting group occurred (Scheme 3). It could be demonstrated that the presence of
one (R)-npeom group within a RNA strand has only a minor influence on the pairing properties of
corresponding duplexes.

1. Introduction. — In contrast to the automated assembly of DNA, the routine
synthesis of RNA is restricted to relatively short sequences (<40 nucleotides).
Structurally, this difference is related to the additional 2'-O-protecting groups which
sterically interfere with the coupling process and require an additional deprotection
step. From the large number of protecting groups investigated so far [1], the (tert-
butyl)dimethylsilyl (=tbdms) group has found the widest application [2]. We have
developed a synthetic method for the introduction of the known [3] (photolabile) [ (2-
nitrobenzyl)oxy Jmethyl (=nbom) group into ribonucleosides [4]. With this 2'-O-
protecting group, better coupling yields and shorter coupling times could be realized (as
compared to the tbdms-group) [3][4]. This result can probably be attributed to its lower
steric demand [1][3][4]. Meanwhile, we have successfully applied our synthetic method
to the introduction of related, formaldehyde acetal derived 2'-O-protecting groups [5].
This work describes the automated synthesis of RNA and caged [6][7] RNA with
phoshoramidites protected by the [ (triisopropylsilyl Joxy|methyl (=tom) group (— 1-4)1)
and the [(R)-1-(2-nitrophenyl)ethoxy]methyl (=(R)-npeom) group (—5-8)2),
respectively (Fig. 1). The sequences prepared in the context of this work represent
three different caged constructs of the hammerhead-ribozyme motif [9-11]3).

1) The full paper on the preparation of the phosphoramidites 1-4 and the assembly and deprotection of
sequences derived therefrom is in preparation [8].

2)  The (R)-configuration of the protecting group was chosen arbitrarily.

3)  One example of such a caged ribozyme substrate has been described already by Chaulk and MacMillan [7],
who protected one adenosine residue by the 2'-O-(2-nitrobenzyl) group. They observed partial cleavage of
the protecting group by F~ions (required for deprotection of 2'-O-silyl groups) and, therefore, have chosen
the orthogonal (acid-labile) 2'-O-[1-(2-fluorophenyl)-4-methoxypiperidin-4-yl] (Fpmp)-protecting group.
The nbom group [3][4] is also cleaved efficiently by F~ ions [12].
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Fig. 1. Phosphoramidites prepared from the precursors 15-22 (Scheme 1) according to [4][5] (ac = acetyl)

2. Results and Discussion. — From the N-acetylated, 5'-O-dimethoxytritylated
nucleosides 9-12 and the alkylating agents tom-Cl (13) and (R)-npeom-Cl (14),
respectively, the protected nucleosides 15-22 were obtained according to our
published procedure [4][5] (Scheme 1)*) and transformed into phosphoramidites 1—
8 or immobilized on solid support according to [4][5]. The alkylating agents 13 and 14
were prepared in analogy to known procedures from 23 and 25 via 24 and 26,
respectively (Scheme 1).

Scheme 1
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9 ac*C ac’C  15(45%)  19(65%)
10 ac®A acbA 16 (40%)  20(55%)
11 ac3G ac’G  17(60%)  21(85%)
12 U U 18 (40%) 22 (55%)
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a) Bu,SnCl,, 'Pr,NEt in (CH,Cl),, 25°, 1 h; then 13 (— 15-18) or 14 (— 19-22), 70°, 30 min (according to
[4][5]). b) NaOH, H,O (cat.), 25 —40°, 1 h; quant. [13]. ¢) ‘Pr;SiCl, 1 H-imidazole, CH,Cl,, 25°, 14 h, 85%. d)
SO,Cl,, CH,Cl,, 25°, 1 h; 85% [13]. ¢) DMSO, Ac,0, AcOH, 25°, 6 d (according to [3][14]).

4)  The 3'-O-protected regioisomers were isolated as minor products. All described compounds were fully
characterized. The R; values and NMR spectra of nucleosides 19—22 and phosphoramidites 5—8 were
nearly identical with those of the nbom-protected analogues [4].
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With the phosphoramidites 1-5, individual coupling yields >99% were obtained
under standard DNA-coupling conditions®). The combination of acetyl (ac) and tom as
base- and sugar-protecting group, respectively, allowed a short, mild and complete
deprotection (Scheme 2). Under these conditions, the (R)-npeom group was com-
pletely stable3). The crude sequences 27, 27*, 28, 29%*, 30, 31*, and 34 were desalted on
Sephadex G-10 [5] and purified by HPLC ( Table).

Fig. 2 shows the capillary electrophoresis (= CE ) chromatograms of the crude and
purified sequences 28 and 31*. They demonstrate that phosphoramidites 1-5 can be
assembled to relatively long RNA sequences and with an efficiency equivalent to DNA

Scheme 2
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a) R = tom 27,28,30,34 R=H
1-5 or b)c)

R = (R)-npeom —_— 27%,29%, 31* R =(R)-npeom
a)
27,29 R=H

tom = Pr;SiOCH,, npeom = NO,C¢H,CH(Me)OCH,, CPG = controlled pore glass
a) Automated 1.5- or 15-pumol synthesis (50 or 500 mg of CPG, loading: 30 umol g~') on a Pharmacia Gene
Assembler; detritylation with 4% CHCLCOOH/(CH,Cl),; 15 pmol: 7 min coupling (400 ul of 0.1 1-5/600 pl
of 0.35M 1-(benzylthio)-1H-tetrazol (= BnSTet) in MeCN); 1.5 pmol: 2.5 min coupling (120 pl of 0.1m 1-5/
360 ul of 0.30M BnSTet in MeCN); capping/oxidation: standard conditions [15]. b) 10m MeNH,, EtOH/H,0O
1:1,25° 3 h. ¢) Im Bu,NF-3H,0, THF, 25°, 12 h. d) 5 um 27* or 29*, 10 mm MgCl,, 50 mm Tris - HCI (pH 8),
H,0, 25°, photolysis.

5)  The commonly employed 2'-O-tbdms-protected phosphoramidites require longer coupling time and usually
give lower coupling yields [1].
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Table. Preparation and Characterization of Sequences (Scheme 2)

r(5'-sequence-3")?) Scale Coupling Isolated MS €) [m/z]
[umol] yield ) [%] yield ©)
a.u. mg calc.t) found
(260 nm) ) [%]
27 ACGGUCGGUCGCC 1.5 99.4 45 2(25) 4131 4133
27 ACGGUC*GGUCGCC 15 99.2 350 11(20) 4310 4314
28 GGCGACCCUGAUGAGGCCGAAAGGCCGAAACCGU 15 99.3 380 12(10) 11051 11053
29* GGCCGAAACUCGUAAGAGUC*ACCAC 15 99.1 350 11(10) 8181 8180
30 GUGGUCUGAUGAGGCC 15 99.1 280 9(15) 5153 5152
31* ACGGUC*GGUCGCCGUUUGGCGACCCUGAU- 1.0 99.5 50 2(10) -#¢)
GAGGCCGAAAGGCCGAAACCGU
34 GGCGACCGACCGU 1.5 99.3 50 2(25) 4154 4152

) C* =2'-O-[(R)-npeom]-protected cytidine nucleotide. ®) Average coupling yield, determined by the trityl assay. ) Yield after
purification by ion-exchange HPLC (Nucleosil-SAX or Dionex-GenPak); by CE, the purity was estimated >98% (31*: ca.
90%). 9)a.u.=absorption unit. °) MALDI-TOF MS; matrix: 2,4-dihydroxyacetophenone (ammonium citrate). ‘) For
fragment [M —H]~ (28: [M —2H +K]"). #) Not measured.

Y R
Fig. 2. CE Traces from crude (left) and purified (right) RNA sequences (measured at 260 nm)
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Fig. 3. HPLC Traces of photolysis experiments (measured at 260 nm).

synthesis. In an exploratory experiment, the photolysis of the substrates 27* and 29*
was carried out under ribozyme-cleaving conditions (10 mm MgCl,, pH 8) [9-11]. The
corresponding HPLC traces in Fig. 3 show a fast and complete removal of the
remaining photolabile (R)-npeom protecting groups®).

In Scheme3 and Fig. 4, the cleavage experiments with the three ribozyme
constructs 27 - 28, 29 - 30 and 31 (obtained from their protected precursors) are shown.
All reactions were carried out in the presence of Mg?* ions at pH 8 and were induced by
an irradiation period of 15 min. In the first experiment, a catalytic amount of ribozyme
28 was added after irradiation of the substrate-precursor 27*. After 3 h, the released
sequence 27 had been cleaved completely (— 32/33), whereas without prior
irradiation, no trace of cleavage was observed. In the second reaction, an equimolar
mixture of the protected substrate 29* and the ribozyme 30 was irradiated for 15 min.
After 1 h, the equilibrium between scission and ligation had been reached (— 34/35/
29). No reaction was observed in the control experiment without irradiation. A fast

6)  The photolysis product of the sequence 27* was identical with the authentic sequence 27 (MS, HPLC, CE).
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Scheme 3. Ribozyme-Catalyzed Cleavage Reactions (Fig. 4)
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C*=C[(R)-npeom]?, C2":3'p = cytidine 2',3'-cyclophosphate
a) Photolysis. b) 5 um 27 (from 27%), 0.5 pm 28, 10 mm MgCl,, 50 mm Tris - HCI (pH 8), H,0, 40°, 3 h. ¢) 5 um
29*, 5 um 30, 10 mm MgCl,, 50 mm Tris - HCI (pH 8), H,O, 25°, photolysis. d) 1 um 31%, 2 mm MgCl,, 20 mm
Tris- HCI (pH 8), H,0, 25°, photolysis.

cleavage reaction was also observed after irradiation of the ribozyme-substrate
conjugate 31%*; again equilibrium had been reached after 1 h (— 32/36/31), and the
control experiment showed no cleavage at all.

These experiments demonstrate that the 2'-O-[(R)-npeom]-protected sequences
are inactive precursors that are transformed into active substrates by photolysis.

The X-ray structures of the ribozymes 28 and 30 have been determined with other
substrate analogues [10][11]. Using molecular-modeling experiments (MacroModel),
we concluded that the (R)-npeom-protected sequences 27* and 29* should not strongly
interfere with the conformation of the substrate-ribozyme pairing complexes. The
thermodynamic parameters of duplex formation of 27%*-37 differs only slightly from
the corresponding parameters of the RNA duplex 27-37 (Fig. 5,a). The transition
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Fig. 4. Ribozyme-catalyzed cleavage reactions (Scheme 3): a) c) CE traces (measured at 260 nm); b) HPLC
traces (measured at 260 nm). Aliquots from the reaction mixture were quenched by addition of EDTA.

curves of the ribozyme 28 with the substrate 27 and the precursor 27* are nearly
identical (Fig. 5,b). The cleavage of 27 by 28 was competitively inhibited by the
substrate analogue 27* ( Fig. 5,c). These results are compatible with a minor influence
of the additional protecting group on the strength and conformation of corresponding
pairing complexes.

The two presented orthogonal 2'-O-protecting groups allowed an efficient, large-
scale preparation of ribozymes and caged substrates. We are now trying to obtain single
crystals in order to investigate by X-ray spectroscopy the fascinating, not yet fully
understood [9] ribozyme cleavage process.

This work was supported by the ETH Ziirich and the Alfred-Werner-Stipendium.

Experimental Part

General. Photolysis: 250-W Hg Lamp, 1-cm Pyrex filter, 15 min, 25°. CE: BioFocus 3000 ( BioRad) with a
coated BioCap-XL column (75 pm X 40 cm, no. 1483082), run buffer (no. 1845026) + 6™ urea, elution with
15 kV at 40°, detection at 260 nm. HPLC: Nucleogel SAX 1000-8/46 (Macherey & Nagel, No. 719469), 0.5 ml/
min; A — B in 45 min (A: 10 mM sodium phosphate in H,O, pH 11.5; B: 10 mM sodium phosphate/Im NaCl in
H,O0, pH 11.5), detection at 260 nm, elution at 25°.
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